Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Region Invariant Normalizing Flows for Mobility Transfer (2109.05738v1)

Published 13 Sep 2021 in cs.LG

Abstract: There exists a high variability in mobility data volumes across different regions, which deteriorates the performance of spatial recommender systems that rely on region-specific data. In this paper, we propose a novel transfer learning framework called REFORMD, for continuous-time location prediction for regions with sparse checkin data. Specifically, we model user-specific checkin-sequences in a region using a marked temporal point process (MTPP) with normalizing flows to learn the inter-checkin time and geo-distributions. Later, we transfer the model parameters of spatial and temporal flows trained on a data-rich origin region for the next check-in and time prediction in a target region with scarce checkin data. We capture the evolving region-specific checkin dynamics for MTPP and spatial-temporal flows by maximizing the joint likelihood of next checkin with three channels (1) checkin-category prediction, (2) checkin-time prediction, and (3) travel distance prediction. Extensive experiments on different user mobility datasets across the U.S. and Japan show that our model significantly outperforms state-of-the-art methods for modeling continuous-time sequences. Moreover, we also show that REFORMD can be easily adapted for product recommendations i.e., sequences without any spatial component.

Citations (10)

Summary

We haven't generated a summary for this paper yet.