Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inhomogeneities in the $2$-Flavor Chiral Gross-Neveu Model (2109.05525v3)

Published 12 Sep 2021 in hep-lat, cond-mat.str-el, and hep-th

Abstract: We investigate the finite-temperature and -density chiral Gross-Neveu model with an axial U$A$(1) symmetry in $1+1$ dimensions on the lattice. In the limit where the number of flavors $N\mathrm{f}$ tends to infinity the continuum model has been solved analytically and shows two phases: a symmetric high-temperature phase with a vanishing condensate and a low-temperature phase in which the complex condensate forms a chiral spiral which breaks translation invariance. In the lattice simulations we employ chiral SLAC fermions with exact axial symmetry. Similarly to $N_\mathrm{f}\to\infty$, we find for $8$ flavors, where quantum and thermal fluctuations are suppressed, two distinct regimes in the $(T,\mu)$ phase diagram, characterized by qualitatively different behavior of the two-point functions of the condensate fields. More surprisingly, at $N_\mathrm{f}=2$, where fluctuations are no longer suppressed, the model still behaves similarly to the $N_\mathrm{f}\to\infty$ model and we conclude that the chiral spiral leaves its footprints even on systems with a small number of flavors. For example, at low temperature the two-point functions are still dominated by chiral spirals with pitches proportional to the inverse chemical potential, although in contrast to large-$N_\mathrm{f}$ their amplitudes decrease with distance. We argue that these results should not be interpreted as the spontaneous breaking of a continuous symmetry, which is forbidden in two dimensions. Finally, using Dyson-Schwinger equations we calculate the decay of the U$_A$(1)-invariant fermion four-point function in search for a BKT phase at zero temperature.

Summary

We haven't generated a summary for this paper yet.