Ergodic property of random diffusivity system with trapping events (2109.05224v2)
Abstract: Brownian yet non-Gaussian phenomenon has recently been observed in many biological and active matter systems. The main idea of explaining this phenomenon is to introduce a random diffusivity for particles moving in inhomogeneous environment. This paper considers a Langevin system containing a random diffusivity and an $\alpha$-stable subordinator with $\alpha<1$. This model describes the particle's motion in complex media where both the long trapping events and random diffusivity exist. We derive the general expressions of ensemble- and time-averaged mean-squared displacements which only contain the values of the inverse subordinator and diffusivity. Further taking specific time-dependent diffusivity, we obtain the analytic expressions of ergodicity breaking parameter and probability density function of the time-averaged mean-squared displacement. The results imply the nonergodicity of the random diffusivity model for any kind of diffusivity, including the critical case where the model presenting normal diffusion.