Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Potential-based Reward Shaping in Sokoban (2109.05022v1)

Published 10 Sep 2021 in cs.LG and cs.AI

Abstract: Learning to solve sparse-reward reinforcement learning problems is difficult, due to the lack of guidance towards the goal. But in some problems, prior knowledge can be used to augment the learning process. Reward shaping is a way to incorporate prior knowledge into the original reward function in order to speed up the learning. While previous work has investigated the use of expert knowledge to generate potential functions, in this work, we study whether we can use a search algorithm(A*) to automatically generate a potential function for reward shaping in Sokoban, a well-known planning task. The results showed that learning with shaped reward function is faster than learning from scratch. Our results indicate that distance functions could be a suitable function for Sokoban. This work demonstrates the possibility of solving multiple instances with the help of reward shaping. The result can be compressed into a single policy, which can be seen as the first phrase towards training a general policy that is able to solve unseen instances.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhao Yang (75 papers)
  2. Mike Preuss (39 papers)
  3. Aske Plaat (76 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.