Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WikiCSSH: Extracting and Evaluating Computer Science Subject Headings from Wikipedia (2109.04945v1)

Published 10 Sep 2021 in cs.SI and cs.DL

Abstract: Hierarchical domain-specific classification schemas (or subject heading vocabularies) are often used to identify, classify, and disambiguate concepts that occur in scholarly articles. In this work, we develop, apply, and evaluate a human-in-the-loop workflow that first extracts an initial category tree from crowd-sourced Wikipedia data, and then combines community detection, machine learning, and hand-crafted heuristics or rules to prune the initial tree. This work resulted in WikiCSSH; a large-scale, hierarchically organized vocabulary for the domain of computer science (CS). Our evaluation suggests that WikiCSSH outperforms alternative CS vocabularies in terms of vocabulary size as well as the performance of lexicon-based key-phrase extraction from scholarly data. WikiCSSH can further distinguish between coarse-grained versus fine-grained CS concepts. The outlined workflow can serve as a template for building hierarchically-organized subject heading vocabularies for other domains that are covered in Wikipedia.

Summary

We haven't generated a summary for this paper yet.