Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on Generalizing the Maximum Entropy Principle to Uncertain Data (2109.04530v2)

Published 9 Sep 2021 in cs.IT, cs.LG, and math.IT

Abstract: The principle of maximum entropy is a broadly applicable technique for computing a distribution with the least amount of information possible constrained to match empirical data, for instance, feature expectations. We seek to generalize this principle to scenarios where the empirical feature expectations cannot be computed because the model variables are only partially observed, which introduces a dependency on the learned model. Generalizing the principle of latent maximum entropy, we introduce uncertain maximum entropy and describe an expectation-maximization based solution to approximately solve these problems. We show that our technique additionally generalizes the principle of maximum entropy. We additionally discuss the use of black box classifiers with our technique, which simplifies the process of utilizing sparse, large data sets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.