Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilingual Speech Recognition for Low-Resource Indian Languages using Multi-Task conformer (2109.03969v2)

Published 22 Aug 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Transformers have recently become very popular for sequence-to-sequence applications such as machine translation and speech recognition. In this work, we propose a multi-task learning-based transformer model for low-resource multilingual speech recognition for Indian languages. Our proposed model consists of a conformer [1] encoder and two parallel transformer decoders. We use a phoneme decoder (PHN-DEC) for the phoneme recognition task and a grapheme decoder (GRP-DEC) to predict grapheme sequence. We consider the phoneme recognition task as an auxiliary task for our multi-task learning framework. We jointly optimize the network for both phoneme and grapheme recognition tasks using Joint CTC-Attention [2] training. We use a conditional decoding scheme to inject the language information into the model before predicting the grapheme sequence. Our experiments show that our proposed approach can obtain significant improvement over previous approaches [4]. We also show that our conformer-based dual-decoder approach outperforms both the transformer-based dual-decoder approach and single decoder approach. Finally, We compare monolingual ASR models with our proposed multilingual ASR approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Krishna D N (6 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.