Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What's Hidden in a One-layer Randomly Weighted Transformer? (2109.03939v1)

Published 8 Sep 2021 in cs.CL and cs.AI

Abstract: We demonstrate that, hidden within one-layer randomly weighted neural networks, there exist subnetworks that can achieve impressive performance, without ever modifying the weight initializations, on machine translation tasks. To find subnetworks for one-layer randomly weighted neural networks, we apply different binary masks to the same weight matrix to generate different layers. Hidden within a one-layer randomly weighted Transformer, we find that subnetworks that can achieve 29.45/17.29 BLEU on IWSLT14/WMT14. Using a fixed pre-trained embedding layer, the previously found subnetworks are smaller than, but can match 98%/92% (34.14/25.24 BLEU) of the performance of, a trained Transformer small/base on IWSLT14/WMT14. Furthermore, we demonstrate the effectiveness of larger and deeper transformers in this setting, as well as the impact of different initialization methods. We released the source code at https://github.com/sIncerass/one_layer_lottery_ticket.

Citations (2)

Summary

We haven't generated a summary for this paper yet.