Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self- and Pseudo-self-supervised Prediction of Speaker and Key-utterance for Multi-party Dialogue Reading Comprehension (2109.03772v2)

Published 8 Sep 2021 in cs.CL

Abstract: Multi-party dialogue machine reading comprehension (MRC) brings tremendous challenge since it involves multiple speakers at one dialogue, resulting in intricate speaker information flows and noisy dialogue contexts. To alleviate such difficulties, previous models focus on how to incorporate these information using complex graph-based modules and additional manually labeled data, which is usually rare in real scenarios. In this paper, we design two labour-free self- and pseudo-self-supervised prediction tasks on speaker and key-utterance to implicitly model the speaker information flows, and capture salient clues in a long dialogue. Experimental results on two benchmark datasets have justified the effectiveness of our method over competitive baselines and current state-of-the-art models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yiyang Li (30 papers)
  2. Hai Zhao (227 papers)
Citations (21)