Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum secure non-malleable-extractors (2109.03097v5)

Published 7 Sep 2021 in cs.CR and quant-ph

Abstract: We construct several explicit quantum secure non-malleable-extractors. All the quantum secure non-malleable-extractors we construct are based on the constructions by Chattopadhyay, Goyal and Li [2015] and Cohen [2015]. 1) We construct the first explicit quantum secure non-malleable-extractor for (source) min-entropy $k \geq \textsf{poly}\left(\log \left( \frac{n}{\epsilon} \right)\right)$ ($n$ is the length of the source and $\epsilon$ is the error parameter). Previously Aggarwal, Chung, Lin, and Vidick [2019] have shown that the inner-product based non-malleable-extractor proposed by Li [2012] is quantum secure, however it required linear (in $n$) min-entropy and seed length. Using the connection between non-malleable-extractors and privacy amplification (established first in the quantum setting by Cohen and Vidick [2017]), we get a $2$-round privacy amplification protocol that is secure against active quantum adversaries with communication $\textsf{poly}\left(\log \left( \frac{n}{\epsilon} \right)\right)$, exponentially improving upon the linear communication required by the protocol due to [2019]. 2) We construct an explicit quantum secure $2$-source non-malleable-extractor for min-entropy $k \geq n- n{\Omega(1)}$, with an output of size $n{\Omega(1)}$ and error $2{- n{\Omega(1)}}$. 3) We also study their natural extensions when the tampering of the inputs is performed $t$-times. We construct explicit quantum secure $t$-non-malleable-extractors for both seeded ($t=d{\Omega(1)}$) as well as $2$-source case ($t=n{\Omega(1)}$).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com