Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Verification with Adaptive Uncertainty Reduction (2109.02984v2)

Published 7 Sep 2021 in cs.SE

Abstract: Stochastic models are widely used to verify whether systems satisfy their reliability, performance and other nonfunctional requirements. However, the validity of the verification depends on how accurately the parameters of these models can be estimated using data from component unit testing, monitoring, system logs, etc. When insufficient data are available, the models are affected by epistemic parametric uncertainty, the verification results are inaccurate, and any engineering decisions based on them may be invalid. To address these problems, we introduce VERACITY, a tool-supported iterative approach for the efficient and accurate verification of nonfunctional requirements under epistemic parameter uncertainty. VERACITY integrates confidence-interval quantitative verification with a new adaptive uncertainty reduction heuristic that collects additional data about the parameters of the verified model by unit-testing specific system components over a series of verification iterations. VERACITY supports the quantitative verification of discrete-time Markov chains, deciding which components are to be tested in each iteration based on factors that include the sensitivity of the model to variations in the parameters of different components, and the overheads (e.g., time or cost) of unit-testing each of these components. We show the effectiveness and efficiency of VERACITY by using it for the verification of the nonfunctional requirements of a tele-assistance service-based system and an online shopping web application.

Citations (9)

Summary

We haven't generated a summary for this paper yet.