Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning-Assisted Exploration of Thermally Conductive Polymers Based on High-Throughput Molecular Dynamics Simulations (2109.02794v1)

Published 7 Sep 2021 in cond-mat.mtrl-sci and physics.comp-ph

Abstract: Finding amorphous polymers with higher thermal conductivity is important, as they are ubiquitous in heat transfer applications. With recent progress in material informatics, machine learning approaches have been increasingly adopted for finding or designing materials with desired properties. However, relatively limited effort has been put into finding thermally conductive polymers using machine learning, mainly due to the lack of polymer thermal conductivity databases with reasonable data volume. In this work, we combine high-throughput molecular dynamics (MD) simulations and machine learning to explore polymers with relatively high thermal conductivity (> 0.300 W/m-K). We first randomly select 365 polymers from the existing PolyInfo database and calculate their thermal conductivity using MD simulations. The data are then employed to train a machine learning regression model to quantify the structure-thermal conductivity relation, which is further leveraged to screen polymer candidates in the PolyInfo database with thermal conductivity > 0.300 W/m-K. 133 polymers with MD-calculated thermal conductivity above this threshold are eventually identified. Polymers with a wide range of thermal conductivity values are selected for re-calculation under different simulation conditions, and those polymers found with thermal conductivity above 0.300 W/m-K are mostly calculated to maintain values above this threshold despite fluctuation in the exact values. A classification model is also constructed, and similar results were obtained compared to the regression model in predicting polymers with thermal conductivity above or below 0.300 W/m-K. The strategy and results from this work may contribute to automating the design of polymers with high thermal conductivity.

Citations (30)

Summary

We haven't generated a summary for this paper yet.