Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Subgradient Descent on a Generic Definable Function Converges to a Minimizer (2109.02455v3)

Published 6 Sep 2021 in math.OC and stat.ML

Abstract: It was previously shown by Davis and Drusvyatskiy that every Clarke critical point of a generic, semialgebraic (and more generally definable in an o-minimal structure), weakly convex function is lying on an active manifold and is either a local minimum or an active strict saddle. In the first part of this work, we show that when the weak convexity assumption fails a third type of point appears: a sharply repulsive critical point. Moreover, we show that the corresponding active manifolds satisfy the Verdier and the angle conditions which were introduced by us in our previous work. In the second part of this work, we show that, under a density-like assumption on the perturbation sequence, the stochastic subgradient descent (SGD) avoids sharply repulsive critical points with probability one. We show that such a density-like assumption could be obtained upon adding a small random perturbation (e.g. a nondegenerate Gaussian) at each iteration of the algorithm. These results, combined with our previous work on the avoidance of active strict saddles, show that the SGD on a generic definable (e.g. semialgebraic) function converges to a local minimum.

Citations (1)

Summary

We haven't generated a summary for this paper yet.