Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multitask Balanced and Recalibrated Network for Medical Code Prediction (2109.02418v3)

Published 6 Sep 2021 in cs.CL

Abstract: Human coders assign standardized medical codes to clinical documents generated during patients' hospitalization, which is error-prone and labor-intensive. Automated medical coding approaches have been developed using machine learning methods such as deep neural networks. Nevertheless, automated medical coding is still challenging because of the imbalanced class problem, complex code association, and noise in lengthy documents. To solve these issues, we propose a novel neural network called Multitask Balanced and Recalibrated Neural Network. Significantly, the multitask learning scheme shares the relationship knowledge between different code branches to capture the code association. A recalibrated aggregation module is developed by cascading convolutional blocks to extract high-level semantic features that mitigate the impact of noise in documents. Also, the cascaded structure of the recalibrated module can benefit the learning from lengthy notes. To solve the class imbalanced problem, we deploy the focal loss to redistribute the attention of low and high-frequency medical codes. Experimental results show that our proposed model outperforms competitive baselines on a real-world clinical dataset MIMIC-III.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wei Sun (373 papers)
  2. Shaoxiong Ji (39 papers)
  3. Erik Cambria (136 papers)
  4. Pekka Marttinen (56 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.