Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unbiased Estimation of the Hessian for Partially Observed Diffusions

Published 6 Sep 2021 in stat.ME, cs.NA, math.NA, and stat.CO | (2109.02371v1)

Abstract: In this article we consider the development of unbiased estimators of the Hessian, of the log-likelihood function with respect to parameters, for partially observed diffusion processes. These processes arise in numerous applications, where such diffusions require derivative information, either through the Jacobian or Hessian matrix. As time-discretizations of diffusions induce a bias, we provide an unbiased estimator of the Hessian. This is based on using Girsanov's Theorem and randomization schemes developed through Mcleish [2011] and Rhee & Glynn [2015]. We demonstrate our developed estimator of the Hessian is unbiased, and one of finite variance. We numerically test and verify this by comparing the methodology here to that of a newly proposed particle filtering methodology. We test this on a range of diffusion models, which include different Ornstein--Uhlenbeck processes and the Fitzhugh--Nagumo model, arising in neuroscience.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.