Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbiased Estimation of the Hessian for Partially Observed Diffusions (2109.02371v1)

Published 6 Sep 2021 in stat.ME, cs.NA, math.NA, and stat.CO

Abstract: In this article we consider the development of unbiased estimators of the Hessian, of the log-likelihood function with respect to parameters, for partially observed diffusion processes. These processes arise in numerous applications, where such diffusions require derivative information, either through the Jacobian or Hessian matrix. As time-discretizations of diffusions induce a bias, we provide an unbiased estimator of the Hessian. This is based on using Girsanov's Theorem and randomization schemes developed through Mcleish [2011] and Rhee & Glynn [2015]. We demonstrate our developed estimator of the Hessian is unbiased, and one of finite variance. We numerically test and verify this by comparing the methodology here to that of a newly proposed particle filtering methodology. We test this on a range of diffusion models, which include different Ornstein--Uhlenbeck processes and the Fitzhugh--Nagumo model, arising in neuroscience.

Citations (2)

Summary

We haven't generated a summary for this paper yet.