Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hamiltonian study of the asymptotic symmetries of gauge theories (2109.02350v1)

Published 6 Sep 2021 in hep-th and gr-qc

Abstract: Asymptotic symmetries are a general and important feature of theories with long-ranging fields, such as gravity, electromagnetism, and Yang-Mills. They appear in the formalism once the analytic behaviour of fields near infinity is specified and have received a renewed interest in the last years after a possible connection with the information-loss paradox has been conjectured. One of the various methods used to study the asymptotic symmetries of field theories relies on the Hamiltonian formalism and was introduced in the seminal work of Henneaux and Troessaert, who successfully applied it to the case of gravity and electrodynamics. The main advantage of this approach is that the study of the asymptotic symmetries ensues from clear-cut first principles. After an extensive review of how the Hamiltonian approach to study asymptotic symmetries of gauge theories works, we apply these methods to two specific situations of physical interest. First, we deal with the non-abelian Yang-Mills case and we show that the above principles lead to trivial asymptotic symmetries (nothing else than the Poincar\'e group) and, as a consequence, to a vanishing total colour charge. This is a new and somewhat unexpected result. It implies that no globally colour-charged states exist in classical non-abelian Yang-Mills theory. The second situation considered is a scalar field minimally-coupled to an abelian gauge field, which can be used to study, at the same time, two specific cases: scalar electrodynamics and the abelian Higgs model. We show that the situation in scalar electrodynamics amply depends on whether the scalar field is massive or massless, insofar as, in the latter case, one cannot canonically implement asymptotic symmetries. Furthermore, we illustrate that, in the abelian Higgs model, the asymptotic canonical symmetries reduce to the Poincar\'e group in an unproblematic fashion.

Summary

We haven't generated a summary for this paper yet.