Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Empirical Risk Minimization with Dependent and Heavy-Tailed Data (2109.02224v2)

Published 6 Sep 2021 in math.ST, stat.ML, and stat.TH

Abstract: In this work, we establish risk bounds for the Empirical Risk Minimization (ERM) with both dependent and heavy-tailed data-generating processes. We do so by extending the seminal works of Mendelson [Men15, Men18] on the analysis of ERM with heavy-tailed but independent and identically distributed observations, to the strictly stationary exponentially $\beta$-mixing case. Our analysis is based on explicitly controlling the multiplier process arising from the interaction between the noise and the function evaluations on inputs. It allows for the interaction to be even polynomially heavy-tailed, which covers a significantly large class of heavy-tailed models beyond what is analyzed in the learning theory literature. We illustrate our results by deriving rates of convergence for the high-dimensional linear regression problem with dependent and heavy-tailed data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.