Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding Reed-Muller Codes with Successive Codeword Permutations (2109.02122v5)

Published 5 Sep 2021 in cs.IT and math.IT

Abstract: A novel recursive list decoding (RLD) algorithm for Reed-Muller (RM) codes based on successive permutations (SP) of the codeword is presented. A low-complexity SP scheme applied to a subset of the symmetry group of RM codes is first proposed to carefully select a good codeword permutation on the fly. Then, the proposed SP technique is integrated into an improved RLD algorithm that initializes different decoding paths with random codeword permutations, which are sampled from the full symmetry group of RM codes. Finally, efficient latency and complexity reduction schemes are introduced that virtually preserve the error-correction performance of the proposed decoder. Simulation results demonstrate that at the target frame error rate of $10{-3}$ for the RM code of length $256$ with $163$ information bits, the proposed decoder reduces $6\%$ of the computational complexity and $22\%$ of the decoding latency of the state-of-the-art semi-parallel simplified successive-cancellation decoder with fast Hadamard transform (SSC-FHT) that uses $96$ permutations from the full symmetry group of RM codes, while relatively maintaining the error-correction performance and memory consumption of the semi-parallel permuted SSC-FHT decoder.

Citations (7)

Summary

We haven't generated a summary for this paper yet.