Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Globally Convergent Coderivative-Based Generalized Newton Methods in Nonsmooth Optimization (2109.02093v3)

Published 5 Sep 2021 in math.OC

Abstract: This paper proposes and justifies two globally convergent Newton-type methods to solve unconstrained and constrained problems of nonsmooth optimization by using tools of variational analysis and generalized differentiation. Both methods are coderivative-based and employ generalized Hessians (coderivatives of subgradient mappings) associated with objective functions, which are either of class $\mathcal{C}{1,1}$, or are represented in the form of convex composite optimization, where one of the terms may be extended-real-valued. The proposed globally convergent algorithms are of two types. The first one extends the damped Newton method and requires positive-definiteness of the generalized Hessians for its well-posedness and efficient performance, while the other algorithm is of {the regularized Newton type} being well-defined when the generalized Hessians are merely positive-semidefinite. The obtained convergence rates for both methods are at least linear, but become superlinear under the semismooth$*$ property of subgradient mappings. Problems of convex composite optimization are investigated with and without the strong convexity assumption {on smooth parts} of objective functions by implementing the machinery of forward-backward envelopes. Numerical experiments are conducted for Lasso problems and for box constrained quadratic programs with providing performance comparisons of the new algorithms and some other first-order and second-order methods that are highly recognized in nonsmooth optimization.

Summary

We haven't generated a summary for this paper yet.