Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The anatomy of Boris type solvers and the Lie operator formalism for deriving large time-step magnetic field integrators (2109.01901v2)

Published 4 Sep 2021 in physics.plasm-ph, cs.NA, and math.NA

Abstract: This work gives a Lie operator derivation of various Boris solvers via a detailed study of trajectory errors in a constant magnetic field. These errors in the gyrocenter location and the gyroradius are the foundational basis for why Boris solvers existed, independent of any finite-difference schemes. This work shows that there are two distinct ways of eliminating these errors so that the trajectory of a charged particle in a constant magnetic field is exactly on the cyclotron orbit. One way reproduces the known second-order symmetric Boris solver. The other yields a previously unknown, but also on-orbit solver, not derivable from finite-difference schemes. By revisiting some historical calculations, it is found that many publications do not distinguish the poorly behaved leap-frog Boris solver from the symmetric second-order Boris algorithm. This symmetric second-order Boris solver's trajectory is much more accurate and remains close to the exact orbit in a combined $nonuniform$ electric and magnetic field at time-steps greater than the cyclotron period. Finally, this operator formalism showed that Buneman's cycloid fitting scheme is mathematically identical to Boris' on-orbit solver and that Boris' E-B splitting is unnecessary.

Citations (1)

Summary

We haven't generated a summary for this paper yet.