Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Matters for Ad-hoc Video Search? A Large-scale Evaluation on TRECVID (2109.01774v2)

Published 4 Sep 2021 in cs.MM

Abstract: For quantifying progress in Ad-hoc Video Search (AVS), the annual TRECVID AVS task is an important international evaluation. Solutions submitted by the task participants vary in terms of their choices of cross-modal matching models, visual features and training data. As such, what one may conclude from the evaluation is at a high level that is insufficient to reveal the influence of the individual components. In order to bridge the gap between the current solution-level comparison and the desired component-wise comparison, we propose in this paper a large-scale and systematic evaluation on TRECVID. By selected combinations of state-of-the-art matching models, visual features and (pre-)training data, we construct a set of 25 different solutions and evaluate them on the TRECVID AVS tasks 2016--2020. The presented evaluation helps answer the key question of what matters for AVS. The resultant observations and learned lessons are also instructive for developing novel AVS solutions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.