Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-model Machine Learning Inference Serving with GPU Spatial Partitioning

Published 1 Sep 2021 in cs.DC and cs.AI | (2109.01611v1)

Abstract: As machine learning techniques are applied to a widening range of applications, high throughput ML inference servers have become critical for online service applications. Such ML inference servers pose two challenges: first, they must provide a bounded latency for each request to support consistent service-level objective (SLO), and second, they can serve multiple heterogeneous ML models in a system as certain tasks involve invocation of multiple models and consolidating multiple models can improve system utilization. To address the two requirements of ML inference servers, this paper proposes a new ML inference scheduling framework for multi-model ML inference servers. The paper first shows that with SLO constraints, current GPUs are not fully utilized for ML inference tasks. To maximize the resource efficiency of inference servers, a key mechanism proposed in this paper is to exploit hardware support for spatial partitioning of GPU resources. With the partitioning mechanism, a new abstraction layer of GPU resources is created with configurable GPU resources. The scheduler assigns requests to virtual GPUs, called gpu-lets, with the most effective amount of resources. The paper also investigates a remedy for potential interference effects when two ML tasks are running concurrently in a GPU. Our prototype implementation proves that spatial partitioning enhances throughput by 102.6% on average while satisfying SLOs.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.