Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation of turbulent computational fluid dynamics simulations with unsupervised ensemble learning (2109.01381v1)

Published 3 Sep 2021 in cs.CV, astro-ph.HE, cs.LG, and physics.plasm-ph

Abstract: Computer vision and machine learning tools offer an exciting new way for automatically analyzing and categorizing information from complex computer simulations. Here we design an ensemble machine learning framework that can independently and robustly categorize and dissect simulation data output contents of turbulent flow patterns into distinct structure catalogues. The segmentation is performed using an unsupervised clustering algorithm, which segments physical structures by grouping together similar pixels in simulation images. The accuracy and robustness of the resulting segment region boundaries are enhanced by combining information from multiple simultaneously-evaluated clustering operations. The stacking of object segmentation evaluations is performed using image mask combination operations. This statistically-combined ensemble (SCE) of different cluster masks allows us to construct cluster reliability metrics for each pixel and for the associated segments without any prior user input. By comparing the similarity of different cluster occurrences in the ensemble, we can also assess the optimal number of clusters needed to describe the data. Furthermore, by relying on ensemble-averaged spatial segment region boundaries, the SCE method enables reconstruction of more accurate and robust region of interest (ROI) boundaries for the different image data clusters. We apply the SCE algorithm to 2-dimensional simulation data snapshots of magnetically-dominated fully-kinetic turbulent plasma flows where accurate ROI boundaries are needed for geometrical measurements of intermittent flow structures known as current sheets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.