Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quaternions over Galois rings and their codes (2109.00735v1)

Published 2 Sep 2021 in cs.IT, math.IT, and math.RA

Abstract: It is shown in this paper that, if $R$ is a Frobenius ring, then the quaternion ring $\mathcal{H}{a,b}(R)$ is a Frobenius ring for all units $a,b \in R$. In particular, if $q$ is an odd prime power then $\mathcal{H}{a,b}(\mathbb{F}_q)$ is the semisimple non-commutative matrix ring $M_2(\mathbb{F}_q)$. Consequently, a homogeneous weight that depends on the field size $q$ is obtained. On the other hand, the homogeneous weight of a finite Frobenius ring with a unique minimal ideal is derived in terms of the size of the ideal. This is illustrated by the quaternions over the Galois ring $GR(2r,m)$. Finally, one-sided linear block codes over the quaternions over Galois rings are constructed, and certain bounds on the homogeneous distance of the images of these codes are proved. These bounds are based on the Hamming distance of the quaternion code and the parameters of the Galois ring. Good examples of one-sided rate-2/6, 3-quasi-cyclic quaternion codes and their images are generated. One of these codes meets the Singleton bound and is therefore a maximum distance separable code.

Citations (1)

Summary

We haven't generated a summary for this paper yet.