Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning compositional programs with arguments and sampling (2109.00619v2)

Published 1 Sep 2021 in cs.PL, cs.AI, and cs.LG

Abstract: One of the most challenging goals in designing intelligent systems is empowering them with the ability to synthesize programs from data. Namely, given specific requirements in the form of input/output pairs, the goal is to train a machine learning model to discover a program that satisfies those requirements. A recent class of methods exploits combinatorial search procedures and deep learning to learn compositional programs. However, they usually generate only toy programs using a domain-specific language that does not provide any high-level feature, such as function arguments, which reduces their applicability in real-world settings. We extend upon a state of the art model, AlphaNPI, by learning to generate functions that can accept arguments. This improvement will enable us to move closer to real computer programs. Moreover, we investigate employing an Approximate version of Monte Carlo Tree Search (A-MCTS) to speed up convergence. We showcase the potential of our approach by learning the Quicksort algorithm, showing how the ability to deal with arguments is crucial for learning and generalization.

Citations (3)

Summary

We haven't generated a summary for this paper yet.