Papers
Topics
Authors
Recent
2000 character limit reached

Learning compositional programs with arguments and sampling

Published 1 Sep 2021 in cs.PL, cs.AI, and cs.LG | (2109.00619v2)

Abstract: One of the most challenging goals in designing intelligent systems is empowering them with the ability to synthesize programs from data. Namely, given specific requirements in the form of input/output pairs, the goal is to train a machine learning model to discover a program that satisfies those requirements. A recent class of methods exploits combinatorial search procedures and deep learning to learn compositional programs. However, they usually generate only toy programs using a domain-specific language that does not provide any high-level feature, such as function arguments, which reduces their applicability in real-world settings. We extend upon a state of the art model, AlphaNPI, by learning to generate functions that can accept arguments. This improvement will enable us to move closer to real computer programs. Moreover, we investigate employing an Approximate version of Monte Carlo Tree Search (A-MCTS) to speed up convergence. We showcase the potential of our approach by learning the Quicksort algorithm, showing how the ability to deal with arguments is crucial for learning and generalization.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.