Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wasserstein GANs with Gradient Penalty Compute Congested Transport (2109.00528v2)

Published 1 Sep 2021 in cs.LG, math.OC, and stat.ML

Abstract: Wasserstein GANs with Gradient Penalty (WGAN-GP) are a very popular method for training generative models to produce high quality synthetic data. While WGAN-GP were initially developed to calculate the Wasserstein 1 distance between generated and real data, recent works (e.g. [23]) have provided empirical evidence that this does not occur, and have argued that WGAN-GP perform well not in spite of this issue, but because of it. In this paper we show for the first time that WGAN-GP compute the minimum of a different optimal transport problem, the so-called congested transport [7]. Congested transport determines the cost of moving one distribution to another under a transport model that penalizes congestion. For WGAN-GP, we find that the congestion penalty has a spatially varying component determined by the sampling strategy used in [12] which acts like a local speed limit, making congestion cost less in some regions than others. This aspect of the congested transport problem is new, in that the congestion penalty turns out to be unbounded and depends on the distributions to be transported, and so we provide the necessary mathematical proofs for this setting. One facet of our discovery is a formula connecting the gradient of solutions to the optimization problem in WGAN-GP to the time averaged momentum of the optimal mass flow. This is in contrast to the gradient of Kantorovich potentials for the Wasserstein 1 distance, which is just the normalized direction of flow. Based on this and other considerations, we speculate on how our results explain the observed performance of WGAN-GP. Beyond applications to GANs, our theorems also point to the possibility of approximately solving large scale congested transport problems using neural network techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tristan Milne (5 papers)
  2. Adrian Nachman (13 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.