Papers
Topics
Authors
Recent
Search
2000 character limit reached

A survey on IQA

Published 29 Aug 2021 in eess.IV and cs.CV | (2109.00347v2)

Abstract: Image quality assessment(IQA) is of increasing importance for image-based applications. Its purpose is to establish a model that can replace humans for accurately evaluating image quality. According to whether the reference image is complete and available, image quality evaluation can be divided into three categories: full-reference(FR), reduced-reference(RR), and non-reference(NR) image quality assessment. Due to the vigorous development of deep learning and the widespread attention of researchers, several non-reference image quality assessment methods based on deep learning have been proposed in recent years, and some have exceeded the performance of reduced -reference or even full-reference image quality assessment models. This article will review the concepts and metrics of image quality assessment and also video quality assessment, briefly introduce some methods of full-reference and semi-reference image quality assessment, and focus on the non-reference image quality assessment methods based on deep learning. Then introduce the commonly used synthetic database and real-world database. Finally, summarize and present challenges.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.