Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher Auslander's defect and classifying substructures of n-exangulated categories (2109.00196v1)

Published 1 Sep 2021 in math.RT and math.CT

Abstract: Herschend-Liu-Nakaoka introduced the notion of $n$-exangulated categories. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka-Palu, but also gives a simultaneous generalization of $n$-exact categories and $(n+2)$-angulated categories. In this article, we give an $n$-exangulated version of Auslander's defect and Auslander-Reiten duality formula. Moreover, we also give a classification of substructures (=closed subbifunctors) of a given skeletally small $n$-exangulated category by using the category of defects.

Summary

We haven't generated a summary for this paper yet.