Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Toeplitz Operators on the Fock--Segal--Bargmann Spaces and Two-Sided Convolutions on the Heisenberg Group (2108.13710v3)

Published 31 Aug 2021 in math.FA, math.CV, math.OA, math.RT, and quant-ph

Abstract: We introduce an extended class of cross-Toeplitz operators which act between Fock--Segal--Bargmann spaces with different weights. It is natural to consider these operators in the framework of representation theory of the Heisenberg group. Our main technique is representation of cross-Toeplitz by two-sided relative convolutions from the Heisenberg group. In turn, two-sided convolutions are reduced to usual (one-sided) convolutions on the Heisenberg group of the doubled dimensionality. This allows us to utilise the powerful group-representation technique of coherent states, co- and contra-variant transforms, twisted convolutions, symplectic Fourier transform, etc.We discuss connections of (cross-)Toeplitz operators with pseudo-differential operators, localisation operators in time-frequency analysis, and characterisation of kernels in terms of ladder operators. The paper is written in detailed and reasonably self-contained manner to be suitable as an introduction into group-theoretical methods in phase space and time-frequency operator theory.

Summary

We haven't generated a summary for this paper yet.