Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Invariants of Links and 3-Manifolds with Boundary defined via Virtual Links (2108.13547v3)

Published 30 Aug 2021 in math.GT

Abstract: We introduce new topological quantum invariants of compact oriented 3-manifolds with boundary where the boundary is a disjoint union of two identical surfaces. The invariants are constructed via surgery on manifolds of the form $F \times I$ where $I$ denotes the unit interval. Since virtual knots and links are represented as links in such thickened surfaces, we are able also to construct invariants in terms of virtual link diagrams (planar diagrams with virtual crossings). These invariants are the first meaningful, nontrivial, and calculable examples of quantum invariants of 3-manifolds with non-vacuous boundary. We give a new invariant of classical links in the 3-sphere in the following sense: Consider a link $L$ in $S3$ of two components. The complement of a tubular neighborhood of $L$ is a manifold whose boundary consists in two copies of a torus. Our invariants apply to this case of bounded manifold and give new invariants of the given link of two components. Invariants of knots are also obtained.

Summary

We haven't generated a summary for this paper yet.