Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Airplane Detection Based on Mask Region Convolution Neural Network (2108.12817v1)

Published 29 Aug 2021 in cs.CV and eess.IV

Abstract: Addressing airport traffic jams is one of the most crucial and challenging tasks in the remote sensing field, especially for the busiest airports. Several solutions have been employed to address this problem depending on the airplane detection process. The most effective solutions are through the use of satellite images with deep learning techniques. Such solutions, however, are significantly costly and require satellites and modern complicated technology which may not be available in most countries worldwide. This paper provides a universal, low cost and fast solution for airplane detection in airports. This paper recommends the use of drones instead of satellites to feed the system with drone images using a proposed deep learning model. Drone images are employed as the dataset to train and evaluate a mask region convolution neural network (RCNN) model. The Mask RCNN model applies faster RCNN as its base configuration with critical modifications on its head neural network constructions. The model detects whether or not an airplane is present and includes mask estimations to approximate surface area and length, which will help future works identify the airplane type. This solution can be easily implemented globally as it is a low-cost and fast solution for airplane detection at airports. The evaluation process reveals promising results according to Microsoft Common Objects in Context (COCO) metrics.

Citations (4)

Summary

We haven't generated a summary for this paper yet.