Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Payoff Control in Repeated Games (2108.12644v1)

Published 28 Aug 2021 in math.OC and q-bio.PE

Abstract: Evolutionary game theory is a powerful mathematical framework to study how intelligent individuals adjust their strategies in collective interactions. It has been widely believed that it is impossible to unilaterally control players' payoffs in games, since payoffs are jointly determined by all players. Until recently, a class of so-called zero-determinant strategies are revealed, which enables a player to make a unilateral payoff control over her partners in two-action repeated games with a constant continuation probability. The existing methods, however, lead to the curse of dimensionality when the complexity of games increases. In this paper, we propose a new mathematical framework to study ruling strategies (with which a player unilaterally makes a linear relation rule on players' payoffs) in repeated games with an arbitrary number of actions or players, and arbitrary continuation probability. We establish an existence theorem of ruling strategies and develop an algorithm to find them. In particular, we prove that strict Markov ruling strategy exists only if either the repeated game proceeds for an infinite number of rounds, or every round is repeated with the same probability. The proposed mathematical framework also enables the search of collaborative ruling strategies for an alliance to control outsiders. Our method provides novel theoretical insights into payoff control in complex repeated games, which overcomes the curse of dimensionality.

Summary

We haven't generated a summary for this paper yet.