Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disrupting Adversarial Transferability in Deep Neural Networks (2108.12492v3)

Published 27 Aug 2021 in cs.LG, cs.AI, and cs.CR

Abstract: Adversarial attack transferability is well-recognized in deep learning. Prior work has partially explained transferability by recognizing common adversarial subspaces and correlations between decision boundaries, but little is known beyond this. We propose that transferability between seemingly different models is due to a high linear correlation between the feature sets that different networks extract. In other words, two models trained on the same task that are distant in the parameter space likely extract features in the same fashion, just with trivial affine transformations between the latent spaces. Furthermore, we show how applying a feature correlation loss, which decorrelates the extracted features in a latent space, can reduce the transferability of adversarial attacks between models, suggesting that the models complete tasks in semantically different ways. Finally, we propose a Dual Neck Autoencoder (DNA), which leverages this feature correlation loss to create two meaningfully different encodings of input information with reduced transferability.

Citations (8)

Summary

We haven't generated a summary for this paper yet.