Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Renting Servers in the Cloud: The Case of Equal Duration Jobs (2108.12486v4)

Published 27 Aug 2021 in cs.DS

Abstract: Renting servers in the cloud is a generalization of the bin packing problem, motivated by job allocation to servers in cloud computing applications. Jobs arrive in an online manner, and need to be assigned to servers; their duration and size are known at the time of arrival. There is an infinite supply of identical servers, each having one unit of computational capacity per unit of time. A server can be rented at any time and continues to be rented until all jobs assigned to it finish. The cost of an assignment is the sum of durations of rental periods of all servers. The goal is to assign jobs to servers to minimize the overall cost while satisfying server capacity constraints. We focus on analyzing two natural algorithms, NextFit and FirstFit, for the case of jobs of equal duration. It is known that the competitive ratio of NextFit and FirstFit are at most 3 and 4 respectively for this case. We prove a tight bound of 2 on the competitive ratio of NextFit. For FirstFit, we establish a lower bound of 2.519 on the competitive ratio, even when jobs have only two distinct arrival times. For the case when jobs have arrival times 0 and 1 and duration 2, we show a lower bound of 1.89 and an upper bound of 2 on the strict competitive ratio of FirstFit. Finally, using the weight function technique, we obtain stronger results for the case of uniform servers.

Citations (3)

Summary

We haven't generated a summary for this paper yet.