Papers
Topics
Authors
Recent
2000 character limit reached

Bottleneck Convex Subsets: Finding $k$ Large Convex Sets in a Point Set

Published 27 Aug 2021 in cs.CG, cs.CC, and cs.DM | (2108.12464v1)

Abstract: Chv\'{a}tal and Klincsek (1980) gave an $O(n3)$-time algorithm for the problem of finding a maximum-cardinality convex subset of an arbitrary given set $P$ of $n$ points in the plane. This paper examines a generalization of the problem, the Bottleneck Convex Subsets problem: given a set $P$ of $n$ points in the plane and a positive integer $k$, select $k$ pairwise disjoint convex subsets of $P$ such that the cardinality of the smallest subset is maximized. Equivalently, a solution maximizes the cardinality of $k$ mutually disjoint convex subsets of $P$ of equal cardinality. We show the problem is NP-hard when $k$ is an arbitrary input parameter, we give an algorithm that solves the problem exactly, with running time polynomial in $n$ when $k$ is fixed, and we give a fixed-parameter tractable algorithm parameterized in terms of the number of points strictly interior to the convex hull.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.