Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EarGate: Gait-based User Identification with In-ear Microphones (2108.12305v1)

Published 27 Aug 2021 in cs.HC

Abstract: Human gait is a widely used biometric trait for user identification and recognition. Given the wide-spreading, steady diffusion of ear-worn wearables (Earables) as the new frontier of wearable devices, we investigate the feasibility of earable-based gait identification. Specifically, we look at gait-based identification from the sounds induced by walking and propagated through the musculoskeletal system in the body. Our system, EarGate, leverages an in-ear facing microphone which exploits the earable's occlusion effect to reliably detect the user's gait from inside the ear canal, without impairing the general usage of earphones. With data collected from 31 subjects, we show that EarGate achieves up to 97.26% Balanced Accuracy (BAC) with very low False Acceptance Rate (FAR) and False Rejection Rate (FRR) of 3.23% and 2.25%, respectively. Further, our measurement of power consumption and latency investigates how this gait identification model could live both as a stand-alone or cloud-coupled earable system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Andrea Ferlini (5 papers)
  2. Dong Ma (32 papers)
  3. Robert Harle (4 papers)
  4. Cecilia Mascolo (86 papers)
Citations (63)

Summary

We haven't generated a summary for this paper yet.