Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual learning under domain transfer with sparse synaptic bursting (2108.12056v9)

Published 26 Aug 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Existing machines are functionally specific tools that were made for easy prediction and control. Tomorrow's machines may be closer to biological systems in their mutability, resilience, and autonomy. But first they must be capable of learning and retaining new information without being exposed to it arbitrarily often. Past efforts to engineer such systems have sought to build or regulate artificial neural networks using disjoint sets of weights that are uniquely sensitive to specific tasks or inputs. This has not yet enabled continual learning over long sequences of previously unseen data without corrupting existing knowledge: a problem known as catastrophic forgetting. In this paper, we introduce a system that can learn sequentially over previously unseen datasets (ImageNet, CIFAR-100) with little forgetting over time. This is done by controlling the activity of weights in a convolutional neural network on the basis of inputs using top-down regulation generated by a second feed-forward neural network. We find that our method learns continually under domain transfer with sparse bursts of activity in weights that are recycled across tasks, rather than by maintaining task-specific modules. Sparse synaptic bursting is found to balance activity and suppression such that new functions can be learned without corrupting extant knowledge, thus mirroring the balance of order and disorder in systems at the edge of chaos. This behavior emerges during a prior pre-training (or 'meta-learning') phase in which regulated synapses are selectively disinhibited, or grown, from an initial state of uniform suppression through prediction error minimization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shawn L. Beaulieu (2 papers)
  2. Jeff Clune (65 papers)
  3. Nick Cheney (20 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.