Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepGene Transformer: Transformer for the gene expression-based classification of cancer subtypes (2108.11833v4)

Published 26 Aug 2021 in q-bio.QM, cs.AI, and q-bio.GN

Abstract: Cancer and its subtypes constitute approximately 30% of all causes of death globally and display a wide range of heterogeneity in terms of clinical and molecular responses to therapy. Molecular subtyping has enabled the use of precision medicine to overcome these challenges and provide significant biological insights to predict prognosis and improve clinical decision-making. Over the past decade, conventional ML and deep learning (DL) algorithms have been widely espoused for the classification of cancer subtypes from gene expression datasets. However, these methods are potentially biased toward the identification of cancer biomarkers. Hence, an end-to-end deep learning approach, DeepGene Transformer, is proposed which addresses the complexity of high-dimensional gene expression with a multi-head self-attention module by identifying relevant biomarkers across multiple cancer subtypes without requiring feature selection as a pre-requisite for the current classification algorithms. Comparative analysis reveals that the proposed DeepGene Transformer outperformed the commonly used traditional and state-of-the-art classification algorithms and can be considered an efficient approach for classifying cancer and its subtypes, indicating that any improvement in deep learning models in computational biologists can be reflected well in this domain as well.

Citations (12)

Summary

We haven't generated a summary for this paper yet.