Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Robust Mispronunciation Detection and Diagnosis for L2 English Learners with Accent-Modulating Methods (2108.11627v2)

Published 26 Aug 2021 in cs.MM, cs.SD, and eess.AS

Abstract: With the acceleration of globalization, more and more people are willing or required to learn second languages (L2). One of the major remaining challenges facing current mispronunciation and diagnosis (MDD) models for use in computer-assisted pronunciation training (CAPT) is to handle speech from L2 learners with a diverse set of accents. In this paper, we set out to mitigate the adverse effects of accent variety in building an L2 English MDD system with end-to-end (E2E) neural models. To this end, we first propose an effective modeling framework that infuses accent features into an E2E MDD model, thereby making the model more accent-aware. Going a step further, we design and present disparate accent-aware modules to perform accent-aware modulation of acoustic features in a finer-grained manner, so as to enhance the discriminating capability of the resulting MDD model. Extensive sets of experiments conducted on the L2-ARCTIC benchmark dataset show the merits of our MDD model, in comparison to some existing E2E-based strong baselines and the celebrated pronunciation scoring based method.

Citations (15)

Summary

We haven't generated a summary for this paper yet.