Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient On-Chip Communication for Parallel Graph-Analytics on Spatial Architectures (2108.11521v2)

Published 26 Aug 2021 in cs.AR and cs.DC

Abstract: Large-scale graph processing has drawn great attention in recent years. Most of the modern-day datacenter workloads can be represented in the form of Graph Processing such as MapReduce etc. Consequently, a lot of designs for Domain-Specific Accelerators have been proposed for Graph Processing. Spatial Architectures have been promising in the execution of Graph Processing, where the graph is partitioned into several nodes and each node works in parallel. We conduct experiments to analyze the on-chip movement of data in graph processing on a Spatial Architecture. Based on the observations, we identify a data movement bottleneck, in the execution of such highly parallel processing accelerators. To mitigate the bottleneck we propose a novel power-law aware Graph Partitioning and Data Mapping scheme to reduce the communication latency by minimizing the hop counts on a scalable network-on-chip. The experimental results on popular graph algorithms show that our implementation makes the execution 2-5x faster and 2.7-4x energy-efficient by reducing the data movement time in comparison to a baseline implementation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.