Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unifying Theory of Thompson Sampling for Continuous Risk-Averse Bandits (2108.11345v4)

Published 25 Aug 2021 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: This paper unifies the design and the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem for a class of risk functionals $\rho$ that are continuous and dominant. We prove generalised concentration bounds for these continuous and dominant risk functionals and show that a wide class of popular risk functionals belong to this class. Using our newly developed analytical toolkits, we analyse the algorithm $\rho$-MTS (for multinomial distributions) and prove that they admit asymptotically optimal regret bounds of risk-averse algorithms under CVaR, proportional hazard, and other ubiquitous risk measures. More generally, we prove the asymptotic optimality of $\rho$-MTS for Bernoulli distributions for a class of risk measures known as empirical distribution performance measures (EDPMs); this includes the well-known mean-variance. Numerical simulations show that the regret bounds incurred by our algorithms are reasonably tight vis-`a-vis algorithm-independent lower bounds.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com