Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal envelope and fine structure cues for dysarthric speech detection using CNNs (2108.11153v1)

Published 25 Aug 2021 in eess.AS and cs.SD

Abstract: Deep learning-based techniques for automatic dysarthric speech detection have recently attracted interest in the research community. State-of-the-art techniques typically learn neurotypical and dysarthric discriminative representations by processing time-frequency input representations such as the magnitude spectrum of the short-time Fourier transform (STFT). Although these techniques are expected to leverage perceptual dysarthric cues, representations such as the magnitude spectrum of the STFT do not necessarily convey perceptual aspects of complex sounds. Inspired by the temporal processing mechanisms of the human auditory system, in this paper we factor signals into the product of a slowly varying envelope and a rapidly varying fine structure. Separately exploiting the different perceptual cues present in the envelope (i.e., phonetic information, stress, and voicing) and fine structure (i.e., pitch, vowel quality, and breathiness), two discriminative representations are learned through a convolutional neural network and used for automatic dysarthric speech detection. Experimental results show that processing both the envelope and fine structure representations yields a considerably better dysarthric speech detection performance than processing only the envelope, fine structure, or magnitude spectrum of the STFT representation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ina Kodrasi (12 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.