Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear-Size Universal Discretization of Geometric Center-Based Problems in Fixed Dimensions (2108.10900v1)

Published 24 Aug 2021 in cs.CG, cs.DS, and math.OC

Abstract: Many geometric optimization problems can be reduced to finding points in space (centers) minimizing an objective function which continuously depends on the distances from the centers to given input points. Examples are $k$-Means, Geometric $k$-Median/Center, Continuous Facility Location, $m$-Variance, etc. We prove that, for any fixed $\varepsilon>0$, every set of $n$ input points in fixed-dimensional space with the metric induced by any vector norm admits a set of $O(n)$ candidate centers which can be computed in almost linear time and which contains a $(1+\varepsilon)$-approximation of each point of space with respect to the distances to all the input points. It gives a universal approximation-preserving reduction of geometric center-based problems with arbitrary continuity-type objective functions to their discrete versions where the centers are selected from a fairly small set of candidates. The existence of such a linear-size set of candidates is also shown for any metric space of fixed doubling dimension.

Citations (2)

Summary

We haven't generated a summary for this paper yet.