Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity (2108.10862v1)

Published 24 Aug 2021 in math.AP

Abstract: In this paper we investigate the dynamical properties of a spatially periodic reaction-diffusion system {whose reaction terms are of hybrid nature in the sense that they are partly competitive and partly cooperative depending on the value of the solution. This class of problems includes various biologically relevant models and in particular many models focusing on the Darwinian evolution of species. We start by studying the principal eigenvalue of the associated differential operator and establishing a minimal speed formula for linear monotone systems. In particular, we show that the generalized Dirichlet principal eigenvalue and the periodic principal eigenvalue may not coincide when the reaction matrix is not symmetric, in sharp contrast with the case of scalar equations. We establish a sufficient condition under which equality holds for the two notions. We also show that the propagation speed may be different depending on the direction of propagation, even in the absence of a first-order advection term, again in a sharp contrast with scalar equations. Next we reveal the relation between the hair-trigger property of front propagation and the sign of the periodic principal eigenvalue. Finally, we discuss the linear determinacy of the propagation speed and also establish the existence of travelling waves travelling whose speeds greater than the minimal speed is also proved. We apply our results to an important class of epidemiological models with genetic mutations.

Summary

We haven't generated a summary for this paper yet.