Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling spatial waves of Wolbachia invasion for controlling mosquito-borne diseases (2108.10837v1)

Published 24 Aug 2021 in q-bio.PE

Abstract: Wolbachia is a natural bacterium that can infect mosquitoes and reduce their ability to transmit mosquito-borne diseases, such as dengue fever, Zika, and chikungunya. Field trials and modeling studies have shown that the fraction of infection among the mosquitoes must exceed a threshold level for the infection to persist. To capture this threshold, it is critical to consider the spatial heterogeneity in the distributions of the infected and uninfected mosquitoes, which is created by the local release of the infected mosquitoes. We develop and analyze partial differential equation (PDE) models to study the invasion dynamics of Wolbachia infection among mosquitoes in the field. Our reaction-diffusion-type models account for both the complex vertical transmission and the spatial mosquito dispersion. We characterize the threshold for a successful invasion, which is a bubble-shaped profile, called the "critical bubble". The critical bubble is optimal in its release size compared to other spatial profiles in a one-dimensional landscape. The fraction of infection near the release center is higher than the threshold level for the corresponding homogeneously mixing ODE models. We show that the proposed spatial models give rise to the traveling waves of Wolbachia infection when above the threshold. We quantify how the threshold condition and traveling-wave velocity depend on the diffusion coefficients and other model parameters. Numerical studies for different scenarios are presented to inform the design of release strategies.

Summary

We haven't generated a summary for this paper yet.