Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sums and products of symplectic eigenvalues (2108.10741v1)

Published 24 Aug 2021 in math.FA

Abstract: For every $2n\times 2n$ real positive definite matrix $A,$ there exists a real symplectic matrix $M$ such that $MTAM=\diag(D,D),$ where $D$ is the $n\times n$ positive diagonal matrix with diagonal entries $d_1(A)\le \cdots\le d_n(A).$ The numbers $d_1(A),\ldots,d_n(A)$ are called the symplectic eigenvalues of $A.$ We derive analogues of Wielandt's extremal principle and multiplicative Lidskii's inequalities for symplectic eigenvalues.

Citations (6)

Summary

We haven't generated a summary for this paper yet.