Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Speech Recognition And Limited Vocabulary: A Survey (2108.10254v2)

Published 23 Aug 2021 in cs.AI, cs.SD, and eess.AS

Abstract: Automatic Speech Recognition (ASR) is an active field of research due to its large number of applications and the proliferation of interfaces or computing devices that can support speech processing. However, the bulk of applications are based on well-resourced languages that overshadow under-resourced ones. Yet, ASR represents an undeniable means to promote such languages, especially when designing human-to-human or human-to-machine systems involving illiterate people. An approach to design an ASR system targeting under-resourced languages is to start with a limited vocabulary. ASR using a limited vocabulary is a subset of the speech recognition problem that focuses on the recognition of a small number of words or sentences. This paper aims to provide a comprehensive view of mechanisms behind ASR systems as well as techniques, tools, projects, recent contributions, and possible future directions in ASR using a limited vocabulary. This work consequently provides a way forward when designing an ASR system using limited vocabulary. Although an emphasis is put on limited vocabulary, most of the tools and techniques reported in this survey can be applied to ASR systems in general.

Citations (3)

Summary

We haven't generated a summary for this paper yet.