Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Queue-Number of Partial Orders (2108.09994v1)

Published 23 Aug 2021 in math.CO and cs.DM

Abstract: The queue-number of a poset is the queue-number of its cover graph viewed as a directed acyclic graph, i.e., when the vertex order must be a linear extension of the poset. Heath and Pemmaraju conjectured that every poset of width $w$ has queue-number at most $w$. Recently, Alam et al. constructed posets of width $w$ with queue-number $w+1$. Our contribution is a construction of posets with width $w$ with queue-number $\Omega(w2)$. This asymptotically matches the known upper bound.

Citations (2)

Summary

We haven't generated a summary for this paper yet.