Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Trends in Quantum Machine Learning (2108.09664v1)

Published 22 Aug 2021 in quant-ph, cond-mat.dis-nn, cs.LG, and stat.ML

Abstract: Here we will give a perspective on new possible interplays between Machine Learning and Quantum Physics, including also practical cases and applications. We will explore the ways in which machine learning could benefit from new quantum technologies and algorithms to find new ways to speed up their computations by breakthroughs in physical hardware, as well as to improve existing models or devise new learning schemes in the quantum domain. Moreover, there are lots of experiments in quantum physics that do generate incredible amounts of data and machine learning would be a great tool to analyze those and make predictions, or even control the experiment itself. On top of that, data visualization techniques and other schemes borrowed from machine learning can be of great use to theoreticians to have better intuition on the structure of complex manifolds or to make predictions on theoretical models. This new research field, named as Quantum Machine Learning, is very rapidly growing since it is expected to provide huge advantages over its classical counterpart and deeper investigations are timely needed since they can be already tested on the already commercially available quantum machines.

Citations (20)

Summary

We haven't generated a summary for this paper yet.