Papers
Topics
Authors
Recent
Search
2000 character limit reached

Structure and Interleavings of Relative Interlevel Set Cohomology

Published 20 Aug 2021 in math.AT and cs.CG | (2108.09298v3)

Abstract: The relative interlevel set cohomology (RISC) is an invariant of real-valued continuous functions closely related to the Mayer--Vietoris pyramid introduced by Carlsson, de Silva, and Morozov. As such, the relative interlevel set cohomology is a parametrization of the cohomology vector spaces of all open interlevel sets relative complements of closed interlevel sets. We provide a structure theorem, which applies to the RISC of real-valued continuous functions whose open interlevel sets have finite-dimensional cohomology in each degree. Moreover, we show this tameness assumption is in some sense equivalent to $q$-tameness as introduced by Chazal, de Silva, Glisse, and Oudot. Furthermore, we provide the notion of an interleaving for RISC and we show that it is stable in the sense that any space with two functions that are $\delta$-close induces a $\delta$-interleaving of the corresponding relative interlevel set cohomologies. Finally, we provide an elementary form of quantitative homotopy invariance for RISC.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.