Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure and Interleavings of Relative Interlevel Set Cohomology (2108.09298v3)

Published 20 Aug 2021 in math.AT and cs.CG

Abstract: The relative interlevel set cohomology (RISC) is an invariant of real-valued continuous functions closely related to the Mayer--Vietoris pyramid introduced by Carlsson, de Silva, and Morozov. As such, the relative interlevel set cohomology is a parametrization of the cohomology vector spaces of all open interlevel sets relative complements of closed interlevel sets. We provide a structure theorem, which applies to the RISC of real-valued continuous functions whose open interlevel sets have finite-dimensional cohomology in each degree. Moreover, we show this tameness assumption is in some sense equivalent to $q$-tameness as introduced by Chazal, de Silva, Glisse, and Oudot. Furthermore, we provide the notion of an interleaving for RISC and we show that it is stable in the sense that any space with two functions that are $\delta$-close induces a $\delta$-interleaving of the corresponding relative interlevel set cohomologies. Finally, we provide an elementary form of quantitative homotopy invariance for RISC.

Citations (8)

Summary

We haven't generated a summary for this paper yet.